
Advanced Crash Course in Supercomputing:
OpenMP

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

© 2004‐2011 Rebecca Hartman‐Baker.  Reproduc9on permi;ed for non‐
commercial, educa9onal use only. 

2

Outline

I.  About OpenMP
II.  OpenMP Directives
III.  Data Scope
IV.  Runtime Library Routines and Environment Variables
V.  Using OpenMP
VI.  Hybrid Programming

3

I. ABOUT OPENMP
Source: http://xkcd.com/225/

4

About OpenMP

•  Industry-standard shared memory programming model
• Developed in 1997
• OpenMP Architecture Review Board (ARB) determines

additions and updates to standard

5

Advantages to OpenMP

• Parallelize small parts of application, one at a time
(beginning with most time-critical parts)
• Can express simple or complex algorithms
• Code size grows only modestly
• Expression of parallelism flows clearly, so code is easy to

read
• Single source code for OpenMP and non-OpenMP – non-

OpenMP compilers simply ignore OMP directives

6

OpenMP Programming Model

• Application Programmer Interface (API) is combination of
–  Directives
–  Runtime library routines
–  Environment variables

• API falls into three categories
–  Expression of parallelism (flow control)
–  Data sharing among threads (communication)
–  Synchronization (coordination or interaction)

7

Parallelism

• Shared memory, thread-based parallelism
• Explicit parallelism (parallel regions)
•  Fork/join model

Source: h;ps://compu9ng.llnl.gov/tutorials/openMP/ 

8

II. OPENMP DIRECTIVES

Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

9

II. OpenMP Directives

• Parallel
•  Loop
• Sections
• Synchronization

10

OpenMP Directives: Parallel

• A block of code executed by multiple threads
• Syntax:
#pragma omp parallel private(list)\
shared (list)

{
 /* parallel section */
}

11

Simple Example

#include <stdio.h>

#include <omp.h>

int main (int argc, char *argv[]) {

 int tid;

 printf(“Hello world from threads:\n”);

 #pragma omp parallel private(tid)

 {

 tid = omp_get_thread_num();

 printf(“<%d>\n”, tid);

 }

 printf(“I am sequential now\n”);

 return 0;

}

12

Output (Simple Example)

Output 1
Hello world from
threads:

<0>
<1>
<2>
<3>
<4>
I am sequential now

Output 2
Hello world from
threads:

<1>
<2>
<0>
<4>
<3>
I am sequential now

Order of execu+on is scheduled by OS!!!!!! 

13

OpenMP Directives: Loop

•  Iterations of the loop following the directive are executed in
parallel
• Syntax:
–  #pragma omp for schedule(type [,chunk])\
private(list) shared(list) nowait

 {
 /* for loop */
 }
–  type = {static, dynamic, guided, runtime}
–  If nowait specified, threads do not synchronize at end of loop

14

Which Loops Are Parallelizable?

Parallelizable
•  Number of iterations known

upon entry, and does not
change
•  Each iteration independent of all

others
•  No data dependence

Not Parallelizable
•  Conditional loops (many while

loops)
•  Iterator loops (e.g., iterating over

a std::list<…> in C++)
•  Iterations dependent upon each

other
•  Data dependence

15

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):
 x = A\b */

for (int i = 0; i < N-1; i++) {
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

16

Example: Parallelizable?

17

Example: Parallelizable?

• Outermost Loop (i):
–  N-1 iterations
–  Iterations depend upon each other (values computed at step i-1

used in step i)
•  Inner loop (j):
–  N-i iterations (constant for given i)
–  Iterations can be performed in any order

•  Innermost loop (k):
–  N-i iterations (constant for given i)
–  Iterations can be performed in any order

18

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):
 x = A\b */

for (int i = 0; i < N-1; i++) {
#pragma omp parallel for
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

Note: can combine parallel and for into single pragma line 

19

OpenMP Directives: Loop Scheduling

• Default scheduling determined by implementation
• Static
–  ID of thread performing particular iteration is function of iteration

number and number of threads
–  Statically assigned at beginning of loop
–  Load imbalance may be issue if iterations have different amounts

of work
• Dynamic
–  Assignment of threads determined at runtime (round robin)
–  Each thread gets more work after completing current work
–  Load balance is possible

20

Loop: Simple Example
#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main () {
 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
 chunk = CHUNKSIZE;
 #pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */
 return 0;
}

21

OpenMP Directives: Sections

•  Non-iterative work-sharing construct
•  Divide enclosed sections of code among threads
•  Section directives nested within sections directive
•  Syntax

#pragma omp sections
{
 #pragma omp section
 /* first section */
 #pragma omp section
 /* next section */
}

22

Sections: Simple Example

#include <omp.h>

#define N 1000

int main () {

 int i;

 double a[N], b[N],
c[N], d[N];

 /* Some initializations
*/

 for (i=0; i < N; i++) {

 a[i] = i * 1.5;

 b[i] = i + 22.35;

 }

 #pragma omp parallel \
shared(a,b,c,d) private(i)

 {

 #pragma omp sections nowait

 {

 #pragma omp section

 for (i=0; i < N; i++)

 c[i] = a[i] + b[i];

 #pragma omp section

 for (i=0; i < N; i++)

 d[i] = a[i] * b[i];

 } /* end of sections */

 } /* end of parallel section */

return 0;

}

23

OpenMP Directives: Synchronization

• Sometimes, need to make sure threads execute regions of
code in proper order
–  Maybe one part depends on another part being completed
–  Maybe only one thread need execute a section of code

• Synchronization directives
–  Critical
–  Barrier
–  Single

24

OpenMP Directives: Synchronization

•  Critical
–  Specifies section of code that must be executed by only one thread at a

time
–  Syntax

#pragma omp critical [name]

–  Names are global identifiers – critical regions with same name are
treated as same region

•  Single
–  Enclosed code is to be executed by only one thread
–  Useful for thread-unsafe sections of code (e.g., I/O)
–  Syntax

#pragma omp single

25

OpenMP Directives: Synchronization

• Barrier
–  Synchronizes all threads: thread reaches barrier and waits until all

other threads have reached barrier, then resumes executing code
following barrier

–  Syntax
#pragma omp barrier

–  Sequence of work-sharing and barrier regions encountered must
be the same for every thread

26

III. VARIABLE SCOPE
Angled spotting scope. Source: http://www.spottingscopes.us/angled-scope-328.jpg

27

Variable Scope

• By default, all variables shared except
–  Certain loop index values – private by default
–  Local variables and value parameters within subroutines called

within parallel region – private
–  Variables declared within lexical extent of parallel region – private

28

Default Scope Example
void caller(int *a, int n) {

int i,j,m=3;

#pragma omp parallel for

for (i=0; i<n; i++) {

 int k=m;

 for (j=1; j<=5; j++) {

 callee(&a[i], &k, j);

 }

}

void callee(int *x, int *y, int
z) {

 int ii;

 static int cnt;

 cnt++;

 for (ii=1; ii<z; ii++) {

 *x = *y + z;

 }

}

Var  Scope  Comment 

a shared  Declared outside parallel construct 

n shared  same 

i private  Parallel loop index 

j shared  Sequen9al loop index 

m shared  Declared outside parallel construct 

k private  Automa9c variable/parallel region 

x private  Passed by value 

*x shared  (actually a) 

y private  Passed by value 

*y private  (actually k) 

z private  (actually j) 

ii private  Local stack variable in called func9on 

cnt shared  Declared sta9c (like global) 

29

Variable Scope

• Good programming practice: explicitly declare scope of all
variables
•  This helps you as programmer understand how variables

are used in program
• Reduces chances of data race conditions or unexplained

behavior

30

Variable Scope: Shared

•  Syntax
–  shared(list)

•  One instance of shared variable, and each thread can read or
modify it
• WARNING: watch out for multiple threads simultaneously

updating same variable, or one reading while another writes
•  Example

#pragma omp parallel for shared(a)
for (i = 0; i < N; i++) {
 a[i] += i;
}

31

Variable Scope: Shared – Bad Example

#pragma omp parallel for shared(n_eq)
for (i = 0; i < N; i++) {
 if (a[i] == b[i]) {
 n_eq++;
 }
}

• n_eq will not be correctly updated
•  Instead, put n_eq++; in critical block (slow) or

introduce private variable my_n_eq, then update
n_eq in critical block after loop (faster)

32

 Variable Scope: Private

•  Syntax
–  private(list)

•  Gives each thread its own copy of variable
•  Example

#pragma omp parallel private(i, my_n_eq)
{
 #pragma omp for
 for (i = 0; i < N; i++) {
 if (a[i] == b[i]) my_n_eq++;
 }
 #pragma omp critical (update_sum)
 {
 n_eq+=my_n_eq;
 }
}

33

Another Solution for Sum

#pragma parallel for
reduction(+:n_eq)

for (i = 0; i < N; i++) {
 if (a[i] == b[i]) {
 n_eq = n_eq+1;
 }
}

34

IV. RUNTIME LIBRARY
ROUTINES AND
ENVIRONMENT VARIABLES
Mt. McKinley National Monument, July, 1966. Source: National Park Service Historic Photograph Collection,
http://home.nps.gov/applications/hafe/hfc/npsphoto4h.cfm?Catalog_No=hpc-001845

35

OpenMP Runtime Library Routines

• void omp_set_num_threads(int
num_threads)
–  Sets number of threads used in next parallel region
–  Must be called from serial portion of code

• int omp_get_num_threads()
–  Returns number of threads currently in team executing parallel

region from which it is called

• int omp_get_thread_num()
–  Returns rank of thread
–  0 ≤ omp_get_thread_num() <
omp_get_num_threads()

36

OpenMP Environment Variables

• Set environment variables to control execution of parallel
code
• OMP_SCHEDULE
–  Determines how iterations of loops are scheduled
–  E.g., setenv OMP_SCHEDULE ”guided, 4”

• OMP_NUM_THREADS
–  Sets maximum number of threads
–  E.g., setenv OMP_NUM_THREADS 4

37

V. USING OPENMP

38

Conditional Compilation

• Can write single source code for use with or without
OpenMP
• Pragmas are ignored
• What about OpenMP runtime library routines?
–  _OPENMP macro is defined if OpenMP available: can use this to

conditionally include omp.h header file, else redefine runtime
library routines

39

Conditional Compilation

#ifdef _OPENMP
 #include <omp.h>
#else
 #define omp_get_thread_num() 0
#endif
…
int me = omp_get_thread_num();
…

40

Running Programs with OpenMP
Directives

• May need special compiler options (e.g., for PGI compilers,
use -mp=nonuma flag)
• May need to set environment variables in batch scripts (e.g.,

on Jaguar, include definition of OMP_NUM_THREADS in
script)
• Example: to run on 64 12-core nodes on Jaguarpf, add the

following to your script requesting 768 procs:
export OMP_NUM_THREADS=12
aprun –n 64 –N 1 myprog

41

VI. HYBRID PROGRAMMING
Hybrid Car. Source: http://static.howstuffworks.com/gif/hybrid-car-hyper.jpg

42

VI. Hybrid Programming

• Motivation
• Considerations
• MPI threading support
• Designing hybrid algorithms
• Examples

43

Motivation

• Multicore architectures are here to stay
• Macro scale: distributed memory architecture, suitable for

MPI
• Micro scale: each node contains multiple cores and shared

memory, suitable for OpenMP
• Obvious solution: use MPI between nodes, and OpenMP

within nodes
• Hybrid programming model

44

Considerations

• Sounds great, Rebecca, but is hybrid programming always
better?
–  No, not always
–  Especially if poorly programmed
–  Depends also on suitability of architecture

•  Think of accelerator model
–  in omp parallel region, use power of multicores; in serial region,

use only 1 processor
–  If your code can exploit threaded parallelism “a lot”, then try hybrid

programming

45

Considerations

• Hybrid parallel programming model
–  Are communication and computation discrete phases of algorithm?
–  Can/do communication and computation overlap?

• Communication between threads
–  Communicate only outside of parallel regions
–  Assign a manager thread responsible for inter-process

communication
–  Let some threads perform inter-process communication
–  Let all threads communicate with other processes

46

MPI Threading Support

• MPI-2 standard defines four threading support levels
–  (0) MPI_THREAD_SINGLE only one thread allowed
–  (1) MPI_THREAD_FUNNELED master thread is only thread

permitted to make MPI calls
–  (2) MPI_THREAD_SERIALIZED all threads can make MPI

calls, but only one at a time
–  (3) MPI_THREAD_MULTIPLE no restrictions
–  (0.5) MPI calls not permitted inside parallel regions (returns
MPI_THREAD_SINGLE) – this is MPI-1

47

What Threading Model Does My Machine
Support?

#include <mpi.h>
#include <stdio.h>
int main(int *argc, char **argv) {

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE,
&provided);

printf("Supports level %d of %d %d %d %d\n",
provided,
MPI_THREAD_SINGLE,
MPI_THREAD_FUNNELED,
MPI_THREAD_SERIALIZED,
MPI_THREAD_MULTIPLE);

MPI_Finalize();
return 0;
}

48

MPI_Init_Thread

• MPI_Init_thread(int required, int
*supported)
–  Use this instead of MPI_Init(…)
–  required: the level of thread support you want
–  supported: the level of thread support provided by

implementation (hopefully = required, but if not available,
returns lowest level > required; failing that, largest level <
required)

–  Using MPI_Init(…) is equivalent to required =
MPI_THREAD_SINGLE

• MPI_Finalize() should be called by same thread
that called MPI_Init_thread(…)

49

Other Useful MPI Functions

• MPI_Is_thread_main(int *flag)
–  Thread calls this to determine whether it is main thread

• MPI_Query_thread(int *provided)
–  Thread calls to query level of thread support

50

Supported Threading Models: Single

• Use single pragma
#pragma omp parallel
{
#pragma omp barrier
#pragma omp single
{
 MPI_Xyz(…)
}
#pragma omp barrier
}

51

Supported Threading Models: Funneling

• XT5 supports funneling (probably Ranger too?)
• Use master pragma
#pragma omp parallel
{
#pragma omp barrier
#pragma omp master
{
 MPI_Xyz(…)
}
#pragma omp barrier
}

52

What Threading Model Should I Use?

• Depends on the application!

Model  Advantages  Disadvantages 

Single  Portable: every MPI 
implementa9on supports 
this 

Limited flexibility 

Funneled  Simpler to program  Manager thread could get 
overloaded 

Serialized  Freedom to communicate  Risk of too much cross‐
communica9on 

Mul9ple  Completely thread safe  Limited availability 

53

Designing Hybrid Algorithms

•  Just because you can communicate thread-to-thread,
doesn’t mean you should
•  Tradeoff between lumping messages together and sending

individual messages
–  Lumping messages together: one big message, one overhead
–  Sending individual messages: less wait time (?)

• Programmability: performance will be great, when you finally
get it working!

54

Example: Mesh Partitioning

• Regular mesh of finite elements
• When we partition mesh, need to communicate information

about (domain) adjacent cells to (computationally) remote
neighbors

55

Example: Mesh Partitioning

56

Example: Mesh Partitioning
Communication Patterns

57

Bibliography/Resources: OpenMP

• Chapman, Barbara, Gabrielle Jost, and Ruud van der Pas.
(2008) Using OpenMP, Cambridge, MA: MIT Press.
• Kendall, Ricky A. (2007) Threads R Us,

 http://www.nccs.gov/wp-content/training/
scaling_workshop_pdfs/threadsRus.pdf
•  LLNL OpenMP Tutorial,

https://computing.llnl.gov/tutorials/openMP/

58

Bibliography/Resources: Hybrid
Programming
•  von Alfthan, Sebastian, Introduction to Hybrid Programming,

PRACE Summer School 2008,
URL:http://www.prace-project.eu/hpc-training/prace-summer-
school/hybridprogramming.pdf
•  Ye, Helen and Chris Ding, Hybrid OpenMP and MPI

Programming and Tuning, Lawrence Berkeley National
Laboratory,
http://www.nersc.gov/nusers/services/training/classes/NUG/
Jun04/NUG2004_yhe_hybrid.ppt
•  Zollweg, John, Hybrid Programming with OpenMP and MPI,

Cornell University Center for Advanced Computing,
http://www.cac.cornell.edu/education/Training/Intro/
Hybrid-090529.pdf
•  MPI-2.0 Standard, Section 8.7, “MPI and Threads,”

http://www.mpi-forum.org/docs/mpi-20-html/
node162.htm#Node162

